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Abstract

Somatic mutation accumulation is a major cause of abnormal cell growth. However, some mutations in cancer cells may be
deleterious to the survival and proliferation of the cancer cells, thus offering a protective effect to the patients. We
investigated this hypothesis via a unique analysis of the clinical and somatic mutation datasets of ovarian carcinomas
published by the Cancer Genome Atlas. We defined and screened 562 macro mutation signatures (MMSs) for their
associations with the overall survival of 320 ovarian cancer patients. Each MMS measures the number of mutations present
on the member genes (except for TP53) covered by a specific Gene Ontology (GO) term in each tumor. We found that
somatic mutations favorable to the patient survival are predominant in ovarian carcinomas compared to those indicating
poor clinical outcomes. Specially, we identified 19 (3) predictive MMSs that are, usually by a nonlinear dose-dependent
effect, associated with good (poor) patient survival. The false discovery rate for the 19 ‘‘positive’’ predictors is at the level of
0.15. The GO terms corresponding to these MMSs include ‘‘lysosomal membrane’’ and ‘‘response to hypoxia’’, each of which
is relevant to the progression and therapy of cancer. Using these MMSs as features, we established a classification tree
model which can effectively partition the training samples into three prognosis groups regarding the survival time. We
validated this model on an independent dataset of the same disease (Log-rank p-value ,2.3610-4) and a dataset of breast
cancer (Log-rank p-value ,9.361023). We compared the GO terms corresponding to these MMSs and those enriched with
expression-based predictive genes. The analysis showed that the GO term pairs with large similarity are mainly pertinent to
the proteins located on the cell organelles responsible for material transport and waste disposal, suggesting the crucial role
of these proteins in cancer mortality.
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Introduction

Ovarian cancer is the fifth-leading cause of cancer death among

women in the United States [1]. The disease is often called a

‘‘silent killer’’ since its occurrence is usually not detected until an

advanced stage. About 70% of the deaths occur in patients with

advanced-stage, high-grade serous ovarian carcinomas [2]. The

mortality has not been significantly improved in the past three

decades [3]. Except for the detection delay and inaccessible

location of the ovaries, other factors accounting for the persistent

mortality include the poor understanding of the underlying biology

and a lack of reliable biomarkers [4].

The formation of tumors largely results from cell growth that

gets out of control [5]. In the human genome, there are many

different types of genes that control cell growth in a very

systematic, precise way. When these genes have an error in their

DNA codes, the RNA or proteins that they encode may not

function properly. Typically, a series of several mutations to

certain classes of genes is usually required before a normal cell will

transform into a cancer cell [6]. Nevertheless, some observed

mutations may be neutral or even beneficial to patient survival.

This perception can be considered from at least two perspectives.

First, some mutations may be deleterious to the growth and

proliferation of cancer cells, thus offering a protective mechanism

to the patients. Second, some mutations may include the actual

causal factors for relatively less-malignant subtypes of the same

disease. For example, previous studies showed that cases with

BRCA1/2 mutations have better overall survival than those with

wild type BRCA1/2 in patients with ovarian carcinoma [7,8].

To date, the Cancer Genome Atlas (TCGA) [9] has generated

and released comprehensive genomic, epigenomic and proteomic

data of clinically annotated high-grade serous ovarian carcinomas

(Ov-HGSCs). These rich data provide an unprecedented oppor-

tunity to investigate the genetic mechanisms underlying the

variance in the survival of cancer patients and to advance the

clinical prognosis and therapy of the disease. Besides the BRCA1/

2 genotypes, the TCGA ovarian cancer paper [7] showed that

gene expression-based sample clusters are also associated with the

survival outcomes. Moreover, recent years have witnessed

numerous studies that focus on the re-analysis of the TCGA data.

PLOS ONE | www.plosone.org 1 November 2014 | Volume 9 | Issue 11 | e112561

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0112561&domain=pdf


www.manaraa.com

In these works, miscellaneous predictive signatures for survival

outcomes have been identified. These signatures include the

expression measures of coding and miRNA genes [10], genotypes

of germline single-nucleotide polymorphisms (SNPs) [11], meth-

ylation patterns of genes in key cancer pathways [12], DNA copy

number variations (CNV) [13] and the occurrences of chromo-

some aberrations [14].

As shown in [7], most of the Ov-HGSCs had 8 to 209 somatic

mutations. These mutations, detected by exome sequencing, were

present in 8945 genes, and 92% of them were validated by

experiments using alternative technologies. However, most of the

observed variants may be passenger mutations not involved in the

formation and progression of ovarian cancer. Hidden among

observed mutations are the individual-specific tumor drivers and

the genetic alterations positively or adversely impacting the growth

and survival of cancer cells. The identification of the clinically

important mutations (genes) is far from completed. A major

challenge impeding the effective statistical analysis of the somatic

mutation spectrum (SMS) is the data sparseness issue. This is

particularly implied by the fact that, among the 510 consensus

cancer genes collected in the Catalogue Of Somatic Mutations In

Cancer database [15], only six are significant in terms of their

mutation frequencies over the 326 tumors. Nevertheless, two

recent studies have demonstrated the potential to train a predictive

model for survival outcomes of ovarian cancer patients using SMS

[16,17]. In this study, we conducted a unique analysis of the

recently updated TCGA’s clinical and SMS datasets of ovarian

cancer. Our study provides significant insights into the treatment

of ovarian cancer and may open novel avenues for molecular

prognosis and prediction.

Results

Predictive macro mutation signatures for patient survival
We developed a novel method to unravel the relationships

between the somatic mutations and the survival time of cancer

patients. First, by assuming that the DNA alterations on the genes

of a similar function may have equivalent or complementary

impacts on the growth and proliferation of cancer cells, we defined

562 macro mutation signatures (MMS), each of which corresponds

to a highly-specific Gene Ontology (GO) term with 50 to 500

member genes. For each patient (i.e. a carcinoma sample), the

MMS quantities were calculated as the number of the mutations

on the genes (except for TP53) covered by the cognate GO term.

When a gene involves in multiple GO terms, the mutation(s)

present on each gene were counted with respect to each cognate

MMS. In this way, we circumvented the sparsity issue inherent to

the raw somatic mutation data (see Introduction section). After

that, the MMSs were screened for their associations with the

overall survival (OS) months of the cancer patients. More

specifically, the associations were evaluated by performing the

Log-rank test and Cox Proportional Hazards (Cox-PH) regression

analysis on the mutation and clinical datasets of 320 training

samples. In the implementation, quantities of the MMSs were

capped by a ceiling value of 2, which represented that a tumor had

at least two mutations present on the member genes covered by

the corresponding GO term. Capping the MMS values was

performed to alleviate the influence of leverage data points, which

were related to un-ordinarily high MMS values and usually

occurred in highly-specific GO terms. In the Cox-PH analysis,

along with a focused MMS, the ages of the patients at the initial

diagnosis and a binary measurement variable indicating the

presence of somatic mutation on TP53 gene, which had a

modestly significant (p,0.05) effect on the patient survival as

shown in our preliminary analysis of the same data, were included

as covariates. In the Log-rank test, the three possible values (0, 1,

2) of a specific MMS were factorized as the indicators of three

groups.

The analysis of the training set (N = 320) demonstrated strong

evidence for the existence of an association between the MMSs

and survival outcomes. As shown in Figure 1-A and 1-B, the

distributional profiles of the p-values (from both the Log-rank test

and Cox-PH regression) for the MMSs are deviated from a

uniform distribution U (0, 1). Interestingly, most of the regression

coefficients (i.e., beta values), especially those corresponding to

small p-values, are negative (Figure 1-C). In the Cox-PH model, a

negative regression coefficient indicates that the hazard function

decreases (or equivalently, survival time increases) as the quantity

of the corresponding predictive variable increases [18]. In this

regard, we concluded that somatic mutations favorable to the

survival of cancer patients are predominant in ovarian carcinoma

compared to those indicating poor clinical outcomes. As shown in

Figure 1-D and 1-E, this statement is also valid in terms of the

number of the involved GO terms and the sizes of the relevant

gene sets (Table S1).

Neither Log-rank test nor Cox-PH regression analysis are

perfect for evaluating the associations between a MMS and the

clinical outcome. The former ignores the patients’ ages at the

initial diagnosis, which intuitively influence survival time. The

latter assumes that the quantity of the hazard functions is linearly

dependent on the preprocessed MMS values, which is not true in

many cases. Therefore, we determined the top significant MMSs

(GO terms) by an alternative method. That is, we selected 20

MMSs if (1) their p-values from both the Log-rank test and Cox-

PH analysis are less than 0.05 and (2) the resulting composite p-

value (see Method section) is less than 0.025. Among those MMSs,

19 are ‘‘positive’’ predictors for survival time. Considering that the

selection criteria may be too stringent for the potential MMSs

adversely affecting overall survival outcomes, we chose another

two MMSs. These two ‘‘negative’’ predictors, with Log-rank p-

values less than 0.01, are relevant to two small patient sets of poor

survival and correspond to GO:0045666 and GO:0042393,

respectively. In this way, we established a predictor set consisting

of 22 MMSs (Table 1).

We addressed the multiple-testing problem in the identification

of predictive MMSs for patient survival by calculating false

discovery rate (FDR) with a permutation-based algorithm (see

Material and Methods section). In the implementation, we

considered not only the skewness of the distribution of the effect

parameters estimated from the original datasets (Figure 1C), but

also the asymmetry of their null distribution established from the

randomly permutated datasets (Figure S1). Because only one

negative predictor (MMS) was rigorously selected, the analysis was

focused on the 19 MMSs associated with good clinical outcomes.

The result showed that, when those MMSs are stated to be

significant, the FDR could be controlled at the level of 0.15.

Based on the definitions, we partition the cognate GO terms of

the 19 positive predictors (MMSs) into six groups: (1) the gene

products (proteins) locate in the cell organelles (membrane)

responsible for waste disposal (lysosome) and material transport

(recycling endosome); (2) the gene products locate in the sub-

cellular structures playing roles in mitosis (nucleosome, spindle

pole, centrosome); (3) the gene products perform function in cell

division (mitosis and cytokinesis); (4) the gene products are

involved in cellular responses to nutrient and hypoxia; (5) the

gene products play roles in cancer pathways (integrin-mediated

signaling pathway and positive regulation of ERK1 and ERK2

cascade); and (6) others. Numerous records regarding those GO
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terms’ relevance to the formation, progression and therapy of

tumors can be located in the literature (see Discussion section).

By looking into the Kaplan-Meier survival curves, we found a

‘‘dose-effect’’ relationship between the somatic mutations and

survival outcomes. That is, for a specific GO term, a single

mutation on the member genes usually does not make much

difference to the patient survival time but two or multiple

mutations do (Figure 2).

Robustness analysis of the selected predictors
In order to test the robustness of our main result, we randomly

split the 320 training samples into two equal-size subsets, and

estimated the effects of the 22 predictive signatures on each subset

separately. The result showed that the sign (positive or negative) of

the estimated regression coefficients of hazard functions on the

MMSs were consistent with those estimated using the entire

training set (upper left plot of Figure S2).

We further tested if each of the 22 selected MMSs can

individually predict the survival of cancer patients in the validation

set. The results showed that, just the predictors ranked at the

second, third and fifth places had a marginally significant p-value

(upper right and bottom plots of Figure S2). While this analysis

only provided a minor support to our findings in the last

subsection, the result is aligned to our expectation. This is because

the insufficiencies of the training set, i.e. the small sample size

(N = 140) and un-validated mutations, could lead to a lower

statistical power.

A classification tree model for patient survival prediction
The findings presented above inspired us to build a classification

tree to predict the patient survival using the 22 identified MMSs.

More specifically, based on the measures of all three negative

predictors, we can separate a poor-prognosis group from the entire

set of training samples whose members meet max
j

(Ni
j )§2, where

Ni
j indicates the value of the jth negative MMS on the ith sample.

Then, based on the values of the top k positive predictors and the

same criterion, i.e. max
k

(Pi
k)§2 withPi

k indicating the value of the

jth positive MMS on the ith sample, a good-prognosis group can be

split from the remaining samples that constitute an intermediate-

prognosis group. See Figure S3 for an illustration. The threshold

for the combined MMS values in the partition was heuristically

chosen according to the pattern of dose-dependent effect of several

MMSs of high interest to patient survival, as showed in Figure 2

and described in the ending paragraph of the first result

subsection.

As shown in Figure 3, the patient groups generated by the tree

model are significantly differentiated with respect to the times of

overall survival (OS) and progression-free survival (PFS). Regard-

less of the k value (5 or 10), the Log-rank test p-value is less than

1.2610210 for OS and is less than 1.661027 for PFS. From the

Kaplan-Meier survival curves, we found that, for the poor-

prognosis group, the upper limits of OS and PFS are 50 and 20

months, respectively. They are also the time points when the

differences in the survival probabilities between the good-

prognosis group and intermediate prognosis group become

sharper. It is worth noting that, the choice of k value is somewhat

arbitrary. The value determines the size of the predicted good-

prognosis group that has a better survival curve compared to the

intermediate-prognosis group. Therefore, a prior knowledge about

the proportion of good-prognosis samples would help with the

specification of k value.

Figure 1. The profile for the associations between the somatic mutations and survival time of patients with ovarian cancer. A (B): The
Q-Q plot of the p-values from Log-rank test (Cox-PH regression) for the 562 considered MMSs. C: The volcano plot of the Cox-PH p-values and
regression coefficients for the 562 considered MMSs. The horizontal dot line marks p = 0.05. D: The Venn diagram for the entire set of genes covered
by the 22 selected MMSs. Specifically, the good (bad) genes are the genes involved in the GO terms corresponding to the 19 (3) positive (negative)
MMSs which predict good (poor) clinical outcomes. A gene can belong to both the positive and negative MMSs, therefore may be double counted. E:
The Venn diagram for the subset of the genes which are covered by the 22 selected MMSs. Each of the genes has the mutation burden in at least one
training sample.
doi:10.1371/journal.pone.0112561.g001
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Model validation using independent datasets
We validated the tree model by applying it to an independent

dataset of Ov-HGSCs. As shown in Figure 4, the survival curves of

the patients in the three (good-, poor- and intermediate-prognosis)

groups resemble those observed for the training set. The group

effect on overall survival time is significant (Log-rank test p-value

,0.001). When k is 5, the good prognosis group in this validation

set has the same OS survival probability (,30%) as that in the

training samples. Moreover, interestingly, although the underlying

negative predictors are not defined on a stringent statistical

criterion, both the survival profile of the poor-prognosis group and

the patient percentage (5/140 = 3.8%) of in this group are similar

to those (14/320 = 4.5%) of the training set. It is worthy of note

that, in the TCGA database, the observed somatic mutations of

the samples in the validation set have not been confirmed by other

methods yet. The average number of mutations in this set is

approximately 80, much higher than those (,50 observed and

,46 validated) of the training set. Hereby, the classification results

are more sensitive to the number of used predictors.

Recent studies showed that the formation of ovarian tumors

shares common cancer drivers with breast tumors. We assume that

these two diseases may be similar regarding the biological

mechanisms underlying the variance in the patient survival time.

We look into this issue by applying the identified predictors for

Ov-HGSCs to the TCGA data of invasive breast carcinomas. As

shown in Figure 5, we can identify a good-prognosis group using

the top positive predictors but cannot separate a poor-prognosis

group via the negative predictors. The difference in the survival

probability between the good-prognosis patents and other patients

becomes evident at the point of 75 months, 25 months more than

the time for ovarian carcinomas.

Comparison between mutation signatures and
expression signatures

By analyzing the TCGA clinical and mRNA expression data of

Ov-HGSCs, we identified 333 expression predictors (genes) for the

overall survival time of patients with the p-values less than 0.01. 28

functionally specific non-redundant GO terms, either at level-4 or

level-5 as categorized by DAVID [19], were over-represented

Figure 2. The illustration of the dose-dependent effect of somatic mutations on survival outcomes. Each plot demonstrates the
relationship between the overall survival months and a specific macro mutation signature (MMS) that corresponds to a GO term. The purple curve
represents the patients each of whom has at least two somatic mutations on the member genes of the indicated MMS (i.e., GO term). The red curve
represents the patients each of whom has one somatic mutation on the member genes of the indicated MMS. The blue curve represents the patients
without any somatic mutation on the member genes of the indicated MMS.
doi:10.1371/journal.pone.0112561.g002
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(FDR ,0.1) by these genes. Hereafter, we named those 28 GO

terms macro expression signatures (MESs). The matrix of the

semantic similarity between the MESs and macro mutation

signatures (MMSs), i.e. the GO terms corresponding to the 22

significant MMSs, was evaluated using the algorithm documented

in [20]. As shown in Figure 6, the similarity coefficients are low in

general. Four MES::MMS pairs have the coefficients over 0.5.

They are: GO:0005788 (endoplasmic reticulum lumen) versus

GO:0055037 (recycling endosome); GO:0005788 versus

GO:0005665 (lysosomal membrane); GO:0051427 (human recep-

tor binding) versus GO:00044325 (ion channel binding),

GO:0051427 versus GO:0042393 (histone binding). Moreover,

five MESs, relevant to the regulation of cellular process and cell

death, show modest levels of similarity to seven MMSs, which

correspond to some specific molecular functions and biological

processes including integrin-mediated signaling pathway

(GO:0007229) and positive regulation of ERK1 and ERK2

cascade (GO:0070374). These results suggest that: (1) only several

survival-relevant somatic mutations impact the clinical outcomes

via the modification of the expression level of the host genes; and

(2) the proteins located on the cell organelles responsible for

material transport and waste disposal may be crucial for the

survival of cancer patients in that both the modification of

properties (due to a non-synonymous mutation) and the change of

expression level in cancer cells can significantly influence the

clinical outcomes.

Discussion

Over the last few decades, cancer researchers have pinpointed

hundreds of cancer genes [21,22], including oncogenes and cancer

suppressor genes, and established a number of DNA-alteration

based theories for carcinogenesis [5,23]. Nevertheless, the genetic

determination of survival outcomes for patients with malignant

tumors has been less investigated yet. By analyzing 320 ovarian

tumor samples, we found that somatic mutations favorable to the

patient survival are predominant in ovarian carcinoma compared

to those indicating poor clinical outcomes. This observation

Figure 3. The classification of the training set of ovarian cancer patients by the proposed tree model. In each plot, the considered
predictors include all three negative MMSs and the most significant (or top) k (5 or 10) positive MMSs as summarized in Table 1. The purple, red and
blue curves represent the predicted poor, good, and intermediate-prognosis groups, respectively.
doi:10.1371/journal.pone.0112561.g003

Ovarian Cancer: Somatic Mutations and Patient Survival

PLOS ONE | www.plosone.org 6 November 2014 | Volume 9 | Issue 11 | e112561



www.manaraa.com

Figure 4. The classification of the validation set of ovarian cancer patients by the proposed tree model. In each plot, the considered
predictors include all three negative MMSs and the most significant (or top) k (5 or 10) positive MMSs as summarized in Table 1. The purple, red and
blue curves represent the predicted poor, good, and intermediate-prognosis groups, respectively.
doi:10.1371/journal.pone.0112561.g004

Figure 5. The classification of breast cancer patients by the proposed tree model. In each plot, the considered predictors include all three
negative MMSs and the most significant (or top) k (5 or 10) positive MMSs as summarized in Table 1. The purple, red and blue curves represent the
predicted poor, good, and intermediate-prognosis groups, respectively.
doi:10.1371/journal.pone.0112561.g005
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highlights the vulnerability of cancer cells to ‘‘extra’’ mutations.

That is, while the cancer-driver mutations prompt cancer cells to

divide in an uncontrolled way or offer them selection advantage

over the adjacent normal cells, the extra mutations may restrict the

continuous proliferation in certain microenvironments. When the

restriction occurs in some important organs such as liver and

spleen, where ovarian metastases usually lead to mortality, the

extra mutations may benefit the patient survival. Such a

mechanism can be elucidated by a further scrutiny of our results.

For example, among the predictive MMSs identified for good

prognosis, there is one that measures the mutation events

occurring on the genes involved in the biological process of

‘‘response to hypoxia’’ [24]. It is well known that the activation of

anaerobic glycolysis (the Warburg effect) provides most of the

building blocks required to duplicate the cellular components of a

dividing cell; therefore, it is also essential for carcinogenesis

[25,26]. If the properties of one or multiple protein(s) involved in

anaerobic glycolysis are altered, the tumors may lose the ability to

produce enough energy for maintaining their growth. As a result,

the carcinogenesis can be retarded.

On the other hand, in many cases, cancer cells acquire

mutations to constitutively activate their survival pathway and to

develop chemo-resistance. This mechanism seems to cast a shadow

on our explanation to the main conclusion of this study. However,

the dilemma could be resolved to some extent if we assume that

only a few new driver mutations occur as the responses to the

treatments. This assumption is supported by our preliminary

analysis which showed that the average numbers of somatic

mutations in Ov-HGSCs don’t substantially increase across the

development stages (from II to IV).

Our analysis suggests that the proteins located on the cell

organelles responsible for material transport and waste disposal

bear a special importance for cancer mortality since both the

modification of properties (due to a non-synonymous mutation)

Figure 6. The visualization of the semantic similarity between the MESs and MMSs. The similarity is measured by a coefficient in the range
of 0 to 1. 1 is the theoretical maximum of the similarity coefficient. For the GO term pairs considered here, the values are consistently less than 0.6.
doi:10.1371/journal.pone.0112561.g006
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and the change of expression level in cancer cells can significantly

impact the clinical outcomes. In particular, the identified

predictors for good clinical outcomes include the MMS corre-

sponding to the cell component GO term ‘‘lysosomal membrane’’.

This result provides the genetic insight into and clinical support for

a promising cancer therapy strategy, in which the lysomoses of

cancer cells can be treated as the drug targets. The strategy arose

from the perception that the altered lysosomal trafficking and

increased expression of the lysosomal proteases termed cathepsins

may form an ‘‘Achilles heel’’ for cancer cells by sensitizing them to

death pathways involving lysosomal membrane permeabilization

and the release of cathepsins into the cytosol [27,28,29,30]. A

recent study on the screening of a small molecule drug library

provided strong evidence for this mechanism. The authors found

that over half of the 11 compounds that induced significant cell

death in p53-null colon cancer cells triggered lysosomal membrane

permeabilization and cathepsin-mediated killing of tumor cells

[31]. We speculate that these compounds may functionally

resemble the mutations present on the genes related to lysosomal

membrane. We further surmise that, for an ovarian cancer patient

with a single mutation on the lysosomal membrane related genes,

an additional functional disruption of these genes caused by the

anti-cancer compounds (or by other treatments) may offer the

patient a better chance for survival, which is similar to those

patients denoted by the purple curve in the upper right plot of

Figure 2.

Resistance to apoptosis and chemotherapy is a critical factor in

cancer recurrence and patient relapse. Several studies over the last

decade have demonstrated that ECM/integrin signaling provides

a survival advantage to various cancer cell types against numerous

chemotherapeutic drugs and against antibody/radiotherapy ther-

apy [32,33,34]. Our result implies that such an advantage for

cancer cells can be interrupted by the mutations occurred on the

cognate genes. As shown in Table 1, the MMS corresponding to

the biological process of ‘‘integrin-mediated signaling pathway’’ is

a positive predictor for the survival time of Ov-HGSC patients.

Furthermore, we find that the mutations on the genes that

positively regulate ERK1/2 cascade [35] can be deleterious to the

continuous proliferation of cancer cells in the sense that the

patients with such mutations had a longer survival time. These

observations suggest that even the mutations whose host genes

play a role in a cancer pathway may benefit the survival of cancer

patients.

Another novel finding from this study is the dose-dependent

effect of somatic mutations on survival outcomes. In light of this

observation, we established a classification tree model to predict

the survival profiles of the Ov-HGSC patients. The model is

robust and performs comparably to the classifiers created using

gene expression and other –omic data [10,11,12,13,36]. The

phenomenon that a single mutation does not make much

difference to a biological process but two (or multiple) mutations

do may be explained by genome evolution. That is, evolution often

created ‘‘backup’’ genes (or gene fragments) that perform the

normal functions of a specific gene (or gene fragment) and a

biological aberration occurs only when both the gene (or fragment)

and its backups are altered [37,38]. In fact, this mechanism may

explain why the formation and malignancy of cancer require

multiple mutations. To clarify this point, it is worth noting that a

lethal biological aberration for tumor cells can imply a favorable

change for the cancer patients and vice versa.

The proposed classification method can be implemented in a

flexible way. For example, using the MMS corresponding to the

GO term ‘‘histone binding’’ as the only predictor, a group of seven

patients whose overall survival time is consistently less than 50

months can be identified from the Ov-HGSC training samples

(Figure 2: bottom left plot). Each of these poor-survival patients

has a short list of ‘‘lethal’’ mutations. Specifically, for the first

sample of this group, there are three lethal mutations present on

the genes NOC2L, CHD8 and CHAF1B. For the other six

samples, the host genes of the lethal mutations are (L3MBTL2,

L3MBTL2, L3MBTL2), (UIMC1, RNF20), (UIMC1, RNF20),

(HJURP, NCAPD2), (NASP, PKN1), (MCM2, NCAPD2),

respectively. Among the eleven member genes, three have been

identified as prognostic indicators of breast or gastric cancers in

previous studies. The evidences include: overexpression of MCM2

in gastric tumors predicted poor prognosis in the patients [39];

knock down of HJURP reduced the sensitivity of breast cancer

patients to radiation treatment [40]; the loss of CHD8 may be an

indicator for biological aggressiveness in gastric cancer [41].

Another two, i.e. UIMC1and CHAF1B, are cancer-relevant. The

former codes BRCA1-A subunit RAP80 [42], a protein important

for genomic stability [43]. The latter codes the chromatin

assembly factor-1/p60, a proliferation marker in various malig-

nant tumors with prognostic value in renal, endometrial and

cervical carcinomas [44]. Therefore, further investigation on the

functions and interaction of the proteins coded by these genes may

facilitate the inference of the personalized mechanisms for the

mortality of ovarian carcinomas.

Recent studies found cancer-driving changes shared across

tumor types [45]. A well-known hallmark is the genetic similarity

between breast cancer and ovarian cancer. For example, the

major driver genes BRCA1/2 for breast cancer are frequently

(10,20%) mutated in the cancer cells of the patients with ovarian

tumors [7]. Moreover, somatic mutations on TP53 (a major

cancer driver gene in Ov-HGSCs) have been observed in the

breast cancer samples of all subtypes, including luminal A, B,

basal-like, and Her2-enriched [46]. Interestingly, we found that

the top predictive MMSs identified using the clinical data and

SMS of Ov-HGSC can predict the survival time of breast cancer

patients. However, the three predictors for poor-prognostic

outcomes of ovarian cancer are invalid when applied to breast

cancer. Intuitively, more significant predictive macro signatures

for breast cancer could be identified using the information of the

patients of the same disease but this work is out of our scope.

To date, survival prediction using the gene expression signatures

for breast or ovarian cancer patients has been the subject of much

research [47,48,49,50,51,52,53]. However, most of the reported

predictive expression signatures cannot be consistently validated

by the analysis on the independent datasets (cohorts) [54]. Our

comparative analysis suggests that only a few survival-related

somatic mutations impact the clinical outcomes by modifying the

expression level of the host genes. A potential reason for the

robustness deficiency in the expression-based prognostic signatures

is the temporal and/or spatial gap between the sampling of the

disease tissue and the occurrence of the lethal metastasis of cancer

cells. We speculate that mutation prognostic signatures, such as

those we identified, have an advantage over an expression-based

signature in the sense that they are less likely subject to progression

history and location transition of cancer cells.

At last, we note that there are some uncertainties in our results.

First, a few genes (N = 16), such as FN1, are involved in both

positive and negative predictors for patient survival. Those genes

account for 1.6% (16/1016) of all the genes which have at least

one mutation in the training set and are covered by the 22

significant MMSs. Second, the false discovery rate of the

predictive MMSs is slightly high (at the level of 0.15 for the 19

MMSs associated with good clinical incomes). In other words, a

small portion of those MMSs might be falsely identified.

Ovarian Cancer: Somatic Mutations and Patient Survival

PLOS ONE | www.plosone.org 9 November 2014 | Volume 9 | Issue 11 | e112561



www.manaraa.com

Nevertheless, these issues are relatively minor to affect our

conclusions regarding the predominance of somatic mutations

favorable to patient survival and the prognostic usefulness of the

identified predictive MMSs as a whole.

Material and Methods

Somatic mutation dataset for Ov-HGSC training samples
(Data-1)

The dataset of 321 tumor samples was generated from three

mat-format files (version 2.4)in the TCGA database [9]. The

archives containing these files are ‘‘broad.mit.edu_OV.Illumina-
GA_DNASeq.Level_2.100.1.0’’, ‘‘hgsc.bcm.edu_OV.SOLiD_D-
NASeq.Level_2.1.6.0’’, and ‘‘genome.wustl.edu_OV.Illumina-
GA_DNASeq.Level_2.1.3.0’’, respectively. Among the total

16306 mutations identified by exome-sequencing, 14960 have

been validated using other methods and were used in our study.

Most validated mutations belong to four single nucleotide

mutation categories, namely missense_mutation (68.09%), silence

(21.39%), nonsense_mutation (4.26%) and splice_site (2.20%).

Among them, 257 validated mutations occurred on the gene TP53

of 225 samples. The cancer samples contained in this dataset were

also used in [7]. There is a trivial difference between the SMS

analyzed in our study and that used in [8].

Somatic mutation dataset for Ov-HGSC validation
samples (Data-2)

This mat-format dataset (version 2.4) was obtained from the

archive ‘‘genome.wustl.edu_OV.IlluminaGA_DNASeq.Level_2.2.
1.0’’ at TCGA [9]. In total, there are 142 tumor samples and

11342 mutations, of which 111 are present on the gene TP53.

None of these mutations has been validated yet. The mutation

distribution over variant types is similar to that of the training set

(Data -1). The entire mutation profiling was used in the study.

Somatic mutation dataset for breast invasive carcinoma
samples (Data-3)

The dataset containing 776 tumor samples [55] was download-

ed from TCGA [9]. The corresponding mat-format file is located

in the archive ‘‘genome.wustl.edu_BRCA.IlluminaGA_DNASeq.
Level_2.5.3.0’’. In total, there are 47243 mutations. The mutation

distribution over variant types is similar to that of Data-1. Among

these somatic mutations identified by exome-sequencing, only

6397 have been validated using other methods. The entire

mutation profiling was used in the study.

Clinical dataset for Ov-HGSC training samples (Data-4)
This dataset is contained in the supplement, ‘‘Copy of TCGA-

OV-Clinical-Table_S1.2.xlsx’’, of the TCGA paper [7]. We

downloaded it from the Nature website. The dataset consists of

the clinical information of 488 Ov-HGSC patients (samples), of

which 320 had the somatic mutations collected in Data-1. This

dataset was used because it contains the progression-free survival

time (PFS) which are not present in the matrix data archive of [9].

While the tumor-stage and tumor-grade attributes are also

available in the dataset, neither [7] nor our preliminary analysis

showed that their effects on the survival time were statistically

significant. Hereby, these two attributes were not considered as

predictive variables in the study.

Clinical dataset for Ov-HGSC validation samples
This dataset was downloaded from [9]. Out of 573 patients in

this set, 140 had the somatic mutations collected in Data-2.

Clinical dataset for breast invasive carcinoma samples
The dataset was downloaded from TCGA database. Out of 971

patients in this set, 737 had the somatic mutations collected in

Data-3.

GO dataset
The gene function annotation data for human was downloaded

(on Oct 8, 2013) from The Gene Ontology (GO) website [56]. In

the dataset, 18920 genes (symbols) were annotated to 13863 GO

terms. We used a heuristic method to select the GO terms

considered in this study. That is, a GO term was selected if the

number of genes annotated to this term was between 50 and 500.

The reason for doing so is twofold. First, if a GO term has only a

few genes, the values of its corresponding MMS may be too sparse

to perform an efficient statistical inference. Second, if there are too

many genes annotated to a GO term, the functional category can

be rather broad to infer meaningful biological insight from the

results. While this setting was somewhat arbitrary, it won’t

introduce the selection bias that might substantially impact the

conclusion.

Gene expression dataset for Ov-HGSC training samples
The mRNA expression levels of the tumor sample contained in

Data-1 were measured on three different platforms, i.e. Affymetrix

Human Exon1.0 ST Array, Agilent 244K Whole Genome

Expression Array and Affymetrix HT-HG-U133A Array. In the

study, the combined gene expression dataset of 11684 genes

present on all three platforms was used. The dataset is a

supplement of [7] and was downloaded from the Nature website.

Methods for survival analysis
Survival analysis was performed using the statistical functions

included in R package ‘‘survival’’ [57,58]. For univariate survival

analysis with a factorized MMS as the predictor, the function

‘‘survdiff’’ was implemented to generate the Log-rank test p-value.

It worth noting that, when ‘‘survdiff’’ was applied to the breast

cancer dataset in which the cases of death at an early stage are rare

due to right censoring, we let the rho parameter equal to negative

2, i.e. assigned each death a weight of S(t)22, where S(t) is the

Kaplan-Meier estimate of survival. The Kaplan-Meier survival

curves (in Figures 2, 3, 4, 5 and S1), with the censored

observations being marked by a vertical tick, were obtained via

the function ‘‘survfit’’. Multivariate survival analysis was conduct-

ed using the function ‘‘coxph’’ which implements Cox PH

regression.

Identification of MMSs for survival prediction
We identified the predictive MMSs for overall survival time

using the procedure presented in the Result section, and ranked

them according to the composite p-value CP. The CP value for a

MMS was calculated as the square root of the product of the p-

values obtained from the Log-rank test and the corresponding

Cox-PH analysis.

Identification of expression predictors for survival time
The association between the patient survival time and the gene

expression levels was evaluated by the Cox PH regression. Similar

to the analysis for the association between a MMS and the survival

time, the patient age at the initial diagnosis was included in the

model as a covariate.

Ovarian Cancer: Somatic Mutations and Patient Survival
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Comparison between macro mutation signatures and
expression signatures

The similarity matrix for the macro mutation signatures

(MMSs) and macro expression signatures (MESs) was calculated

by the function ‘‘goSim’’ in the R package ‘‘GOSemSim’’ [59]. In

the employed method [20], the semantics of GO terms are

encoded into a numeric format and the different semantic

contributions of the distinct relations are considered.

Estimation of FDR
By adapting the methods used in [60,61], we developed a

permutation-based algorithm to estimate the false discovery rate

(FDR) for the 19 predictive MMSs associated with good clinical

outcomes. First, we generated 500 shuffled datasets via randomly

permutating the clinical records of the 320 training samples while

keeping their mutation profile untouched. Then, we repeated the

survival analysis by the same method used in the identification of

predictive MMSs, and recorded the Log-rank p-values (prank),

Cox-PH p-values (pcox), the complex p-values (pcp) as well as the

regression coefficients (i.e. the beta values c) for all the 562

addressed MMSs. By doing so, we established the null distribu-

tions for prank, pcox, pcp and c, respectively. Finally, we compared

the true distributions of p-values and regression coefficients to the

corresponding null distributions to estimate false discovery rate by

the following equation.

FDR~
P(p

(0)
rankvzrank,p(0)

coxvzcox,p(0)
cp vzcp,cv0)

P(p
(1)
rankvzrank,p

(1)
coxvzcox,p

(1)
cp vzcp,cv0)

ð1Þ

In (1), p(0)
� is a p-value from the null distribution and the

subscript index * represents ‘‘rank’’, ‘‘cox’’ or ‘‘cp’’; p(1)
� is a p-

value from the true distribution; z� is the threshold specified for the

identification of predictive MMSs, and it is set to be 0.05, 0.05 or

0.025 for prank, pcox or pcp, respectively. The numerator is the

fraction of p-values from the null distributions that fall below the

thresholds (z�) with the cognate regression coefficients less than 0.

The denominator is the corresponding fraction for the estimates of

p-values and regression coefficients based on the original dataset.

Availability
R codes for the statistical analysis are available upon request.

Supporting Information

Figure S1 The asymmetry of the null distributions of
the effect parameters. The volcano plot of the Cox-PH p-

values and regression coefficients for the 562 considered MMSs is

based on the results of five randomly shuffled datasets.

(TIF)

Figure S2 Robustness analysis of the predictive MMSs.
Top-left: The scatter plot shows the regression coefficients

estimated from the two equal-size subsets of 320 training samples

using the same Cox-PH model in the identification of the

predictors. The solid squares (triangle) represent the 19 (1) MMSs

which were rigorously selected and associated with good (poor)

clinical outcomes. The solid circles represent the two MMSs which

were selected in a less-rigorous way and were associated with poor

clinical outcomes. The MMSs focused in the top right and bottom

plots of this figure are marked with red. Top-right (bottom-
left, bottom-right): The results were obtained by analyzing 140

training samples. Each plot demonstrates the relationship between

overall survival months and a specific macro mutation signature

(MMS) that corresponds to a GO term. The purple curve

represents the patients each of whom has at least two somatic

mutations on the member genes of the indicated MMS (i.e., GO

term). The red curve represents the patients each of whom has one

somatic mutation on the member genes of the indicated MMS.

The blue curve represents the patients without any somatic

mutation on the member genes of the indicated MMS.

(TIF)

Figure S3 An illustration of the proposed classification
tree model for patient survival prediction. This sample tree

is generated using the three negative predictors (Nj, 1ƒjƒ3) and

five positive predictors (Pk, 1ƒkƒ5) as the features. S represents

the entire sample (or patient) set. B represents the predicted poor-

prognosis set of patients. �BBrepresents the remaining patient set

after B is excluded. G represents the predicted patient set with

good-prognosis. M represents the intermediate-prognosis set of

patients, which is the remaining section of S after B and G are

excluded. Note that in this sample tree, the feature tested at each

internal node is a feature set instead of a single feature, which is

different from the traditional classification/decision tree model.

(TIF)

Table S1 The genes involved in the GO terms corre-
sponding to the predictive MMSs.

(XLSX)
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